



# Instrument Equalizer: An Audio Player with Symposis Real-time Instrument's Volume Controlling Functions

K. Itoyama(Kyoto Univ.), M. Goto(AIST), H. G. Okuno(Kyoto Univ.)

## Background

User's demand changes from Passive Entertainment to Active Entertainment

#### Passive listening

listen to good sound

- high-quality speakers
- sorround system

easy to enjoy by technology evolution

#### Active listening

listen to favorite sound

- composition, arrangement
- performe a instrument

difficult to enjoy without skill or tools

- Technology to change the contents of musical pieces
  - 1. Develop an audio player with instrument's volume controlling functions
  - 2. Separate all musical instrument sounds from polyphonic musical signals

## System Implementation



#### Other Applications

- Control volumes of instruments according to one's preference Enjoy like arranger
- Cut off a specific instrument
  Create a Minus One Music
- Re-analyze the remixed signal with different mixing balance

Generate an alternative query for the QBE Retrieval



### Technical Problems

Problem 1: Mixture of harmonic and inharmonic sounds

Construct an integrated tone model consisting of harmonic and inharmonic models

Integrated Tone Model:

$$J(t,f) = H(t,f) + I(t,f)$$











Problem 2: Undesirable local minumal values in the iterative algorithm

Design an objective function with multiple constraints for the iteration algorithm

Observed Spectrogram:  $\Delta(k,t,f)$  Integrated Model:  $J_k(t,f)$  Distribution Function: X(t,f) (separate  $\Delta(k,t,f)$  to each note)

Minimize the Kullback-Leibler Divergence between  $J_k(t,f)$  and X(t,f)

and costs corresponding to constraints

- Smoothness of the inharmonic model
- Intra-instrument timbre consistency
- Continuity of F0 trajectory

